Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38106002

RESUMO

Nerve growth factor (NGF) monoclonal antibodies (mAb) are one of the few patient-validated non-opioid treatments for chronic pain, despite failing to gain FDA approval due to worsened joint damage in some osteoarthritis patients. Herein, we demonstrate that neuropilin-1 (NRP1) is a nociceptor-enriched co-receptor for NGF that is necessary for tropomyosin-related kinase A (TrkA) signaling of pain. NGF binds NRP1 with nanomolar affinity. NRP1 and G Alpha Interacting Protein C-terminus 1 (GIPC1), a NRP1/TrkA adaptor, are coexpressed with TrkA in human and mouse nociceptors. NRP1 small molecule inhibitors and blocking mAb prevent NGF-stimulated action potential firing and activation of Na+ and Ca2+ channels in human and mouse nociceptors and abrogate NGF-evoked and inflammatory nociception in mice. NRP1 knockdown blunts NGF-stimulated TrkA phosphorylation, kinase signaling and transcription, whereas NRP1 overexpression enhances NGF and TrkA signaling. As well as interacting with NGF, NRP1 forms a heteromeric complex with TrkA. NRP1 thereby chaperones TrkA from the biosynthetic pathway to the plasma membrane and then to signaling endosomes, which enhances NGF-induced TrkA dimerization, endocytosis and signaling. Knockdown of GIPC1, a PDZ-binding protein that scaffolds NRP1 and TrkA to myosin VI, abrogates NGF-evoked excitation of nociceptors and pain-like behavior in mice. We identify NRP1 as a previously unrecognized co-receptor necessary for NGF/TrkA pain signaling by direct NGF binding and by chaperoning TrkA to the plasma membrane and signaling endosomes via the adaptor protein GIPC1. Antagonism of NRP1 and GIPC1 in nociceptors offers a long-awaited alternative to systemic sequestration of NGF with mAbs for the treatment of pain.

2.
Sci Rep ; 13(1): 22326, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102161

RESUMO

Isozymes are enzymes that catalyze identical biological reactions, yet exhibit slight variations in structures and catalytic efficiency, which enables the precise adjustment of metabolism to fulfill the specific requirements of a particular tissue or stage of development. Methionine aminopeptidase (MetAP) isozymes function a critical role in cleaving N-terminal methionine from nascent proteins to generate functional proteins. In humans, two distinct MetAP types I and II have been identified, with type I further categorized into cytosolic (MetAP1) and mitochondrial (MetAP1D) variants. However, despite extensive structural studies on both bacterial and human cytosolic MetAPs, the structural information remains unavailable for human mitochondrial MetAP. This study was aimed to elucidate the high-resolution structures of human mitochondrial MetAP1D in its apo-, cobalt-, and methionine-bound states. Through a comprehensive analysis of the determined structures and a docking simulation model with mitochondrial substrate peptides, we present mechanistic insights into the cleavage process of the initiator methionine from mitochondrial proteins. Notably, despite the shared features at the active site between the cytosolic and mitochondrial MetAP type I isozymes, we identified distinct structural disparities within the active-site pocket primarily contributed by two specific loops that could play a role in accommodating specific substrates. These structural insights offer a basis for the further exploration of MetAP isozymes as critical players in cellular processes and potential therapeutic applications.


Assuntos
Aminopeptidases , Metionina , Humanos , Aminopeptidases/metabolismo , Isoenzimas , Metionina/metabolismo , Metionil Aminopeptidases/metabolismo , Racemetionina
3.
Elife ; 122023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37855711

RESUMO

The vasopressin type 2 receptor (V2R) is an essential G protein-coupled receptor (GPCR) in renal regulation of water homeostasis. Upon stimulation, the V2R activates Gαs and Gαq/11, which is followed by robust recruitment of ß-arrestins and receptor internalization into endosomes. Unlike canonical GPCR signaling, the ß-arrestin association with the V2R does not terminate Gαs activation, and thus, Gαs-mediated signaling is sustained while the receptor is internalized. Here, we demonstrate that this V2R ability to co-interact with G protein/ß-arrestin and promote endosomal G protein signaling is not restricted to Gαs, but also involves Gαq/11. Furthermore, our data imply that ß-arrestins potentiate Gαs/Gαq/11 activation at endosomes rather than terminating their signaling. Surprisingly, we found that the V2R internalizes and promote endosomal G protein activation independent of ß-arrestins to a minor degree. These new observations challenge the current model of endosomal GPCR signaling and suggest that this event can occur in both ß-arrestin-dependent and -independent manners.


Assuntos
Arrestinas , Receptores de Vasopressinas , beta-Arrestinas/metabolismo , Arrestinas/metabolismo , beta-Arrestina 1/metabolismo , Endossomos/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Vasopressinas/metabolismo
4.
bioRxiv ; 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37034816

RESUMO

The vasopressin type 2 receptor (V2R) is an essential GPCR in renal regulation of water homeostasis. Upon stimulation, the V2R activates Gαs and Gαq/11, which is followed by robust recruitment of ß-arrestins and receptor internalization into endosomes. Unlike canonical GPCR signaling, the ß-arrestin association with the V2R does not terminate Gαs activation, and thus, Gαs-mediated signaling is sustained while the receptor is internalized. Here, we demonstrate that this V2R ability to co-interact with G protein/ß-arrestin and promote endosomal G protein signaling is not restricted to Gαs, but also involves Gαq/11. Furthermore, our data implies that ß-arrestins potentiate Gαs/Gαq/11 activation at endosomes rather than terminating their signaling. Surprisingly, we found that the V2R internalizes and promote endosomal G protein activation independent of ß-arrestins to a minor degree. These new observations challenge the current model of endosomal GPCR signaling and suggest that this event can occur in both ß-arrestin-dependent and -independent manners.

5.
Comput Struct Biotechnol J ; 20: 745-756, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35140891

RESUMO

Bcl-2 family kin (Bfk), also known as Bcl-2-like 15, plays an essential role in regulating apoptosis by eliciting weak pro-apoptotic responses in the gastrointestinal tract. Human Bfk is a novel Bcl-2 family protein owing to its unique domain composition involving BH2 and BH3. However, the molecular mechanism underlying the regulation of apoptosis by Bfk remains unclear. Here, we first report the crystal structure of human full-length Bfk. Surprisingly, the structure of Bfk adopts a canonical Bcl-2 fold but lacks the hydrophobic cleft, which could accommodate a BH3 domain from other Bcl-2 family proteins. Our biophysical interaction analysis proved that the full-length Bfk itself does not interact with multi-domain Bcl-2 family proteins or a BH3-containing peptide. Instead, Bfk is structurally and functionally reminiscent of Bid, a BH3-only protein in the Bcl-2 family, with similar conformations of helices α3-α5 and the specific motif in helix α5. Not only structural analyses of the full-length Bfk but also molecular dynamics simulation suggested that Bfk elicits its pro-apoptotic activity through a Bid-like apoptotic mechanism in which the BH3 domain is released upon caspase-mediated cleavage and a conformational change of the truncated form. Indeed, the BH3 peptide derived from Bfk exhibited in vitro interactions with Bcl-2, Bcl-XL, and Bak. These findings provide new insights into the molecular characteristics of Bfk and a valuable foundation for development of a new therapeutic target to control apoptosis.

6.
Int J Mol Sci ; 22(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34445192

RESUMO

Given the functional attributes of Doublecortin-like kinase 1 (DCLK1) in tumor growth, invasion, metastasis, cell motility, and tumor stemness, it is emerging as a therapeutic target in gastrointestinal cancers. Although a series of specific or nonspecific ATP-competitive inhibitors were identified against DCLK1, different types of scaffolds that can be utilized for the development of highly selective inhibitors or structural understanding of binding specificities of the compounds remain limited. Here, we present our work to repurpose a Janus kinase 1 inhibitor, ruxolitinib as a DCLK1 inhibitor, showing micromolar binding affinity and inhibitory activity. Furthermore, to gain an insight into its interaction mode with DCLK1, a crystal structure of the ruxolitinib-complexed DCLK1 has been determined and analyzed. Ruxolitinib as a nonspecific DCLK1 inhibitor characterized in this work is anticipated to provide a starting point for the structure-guided discovery of selective DCLK1 inhibitors.


Assuntos
Antineoplásicos/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Pirazóis/farmacologia , Antineoplásicos/química , Quinases Semelhantes a Duplacortina , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Simulação de Acoplamento Molecular , Nitrilas , Conformação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Pirazóis/química , Pirimidinas
7.
Int J Mol Sci ; 21(21)2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142954

RESUMO

MINERVA (melanoma invasion by ERK), also known as FAM129B, is a member of the FAM129 protein family, which is only present in vertebrates. MINERVA is involved in key signaling pathways regulating cell survival, proliferation and apoptosis and found upregulated in many types of cancer promoting invasion. However, the exact function of the protein remains elusive. X-ray crystallographic methods were implemented to determine the crystal structure of MINERVAΔC, lacking C-terminal flexible region. Trypsin digestion was required before crystallization to obtain diffraction-quality crystals. While the N-terminal pleckstrin homology (PH) domain exhibits the typical fold of PH domains, lipid binding assay indicates specific affinity towards phosphatidic acid and inositol 3-phosphate. A helix-rich domain that constitutes the rest of the molecule demonstrates a novel L-shaped fold that encompasses the PH domain. The overall structure of MINERVAΔC with binding assays and cell-based experiments suggest plasma membrane association of MINERVA and its function seem to be tightly regulated by various motifs within the C-terminal flexible region. Elucidation of MINERVAΔC structure presents a novel fold for an α-helix bundle domain that would provide a binding platform for interacting partners.


Assuntos
Membrana Celular/metabolismo , Cristalografia por Raios X/métodos , Melanoma/metabolismo , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Humanos , Melanoma/patologia , Modelos Moleculares , Fosfoproteínas/isolamento & purificação , Ligação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Transdução de Sinais
8.
Pharmacol Res ; 160: 105058, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32619722

RESUMO

Despite the discovery of tyrosine kinase inhibitors (TKIs) for the treatment of breakpoint cluster region-Abelson (BCR-ABL)+ cancer types, patients with chronic myeloid leukemia (CML) treated with TKIs develop resistance and severe adverse effects. Combination treatment, especially with a histone deacetylase (HDAC) 6 inhibitor (HDAC6i), appears to be an attractive option to prevent TKI resistance, considering the potential capacity of an HDAC6i to diminish BCR-ABL expression. We first validated the in vivo anti-cancer potential of the compound 7b by significantly reducing the tumor burden of BALB/c mice xenografted with K-562 cells, without notable organ toxicity. Here, we hypothesize that the HDAC6i compound 7b can lead to BCR-ABL downregulation in CML cells and sensitize them to TKI treatment. The results showed that combination treatment with imatinib and 7b resulted in strong synergistic caspase-dependent apoptotic cell death and drastically reduced the proportion of leukemia stem cells, whereas this treatment only moderately affected healthy cells. Ultimately, the combination significantly decreased colony formation in a semisolid methylcellulose medium and tumor mass in xenografted zebrafish compared to each compound alone. Mechanistically, the combination induced BCR-ABL ubiquitination and downregulation followed by disturbance of key proteins in downstream pathways involved in CML proliferation and survival. Taken together, our results suggest that an HDAC6i potentiates the effect of imatinib and could overcome TKI resistance in CML cells.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas de Fusão bcr-abl/metabolismo , Desacetilase 6 de Histona/antagonistas & inibidores , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Ubiquitinação/efeitos dos fármacos , Animais , Caspases/efeitos dos fármacos , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Células K562 , Camundongos , Camundongos Endogâmicos BALB C , Ensaio Tumoral de Célula-Tronco , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Arch Biochem Biophys ; 689: 108413, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32473133

RESUMO

The proviral integration site for Moloney murine leukemia virus (PIM) family of serine/threonine-specific kinases consist of three isoforms, that regulate proliferation, apoptosis, metabolism, invasion, and metastasis of cancer cells. Among these, abnormally elevated kinase activity of PIM-1 contributes to the progression of gastric cancer and predicts poor prognosis and a low survival rate in gastric cancer patients. In the present study, we found that resveratrol, one of the representative chemopreventive and anticarcinogenic phytochemicals, directly binds to PIM-1 and thereby inhibits its catalytic activity in human gastric cancer SNU-601 cells. This resulted in suppression of phosphorylation of the proapoptotic Bad, a known substrate of PIM-1. Resveratrol, by inactivating PIM-1, also inhibited anchorage-independent growth and proliferation of SNU-601 cells. To understand the molecular interaction between resveratrol and PIM-1, we conducted docking simulation and found that resveratrol directly binds to the PIM-1 at the ATP-binding pocket. In conclusion, the proapototic and anti-proliferative effects of resveratrol in gastric cancer cells are likely to be mediated through suppression of PIM-1 kinase activity, which may represent a novel mechanism underlying its chemopreventive and anticarcinogenic actions.


Assuntos
Proliferação de Células/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Resveratrol/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Neoplasias Gástricas/metabolismo
10.
Clin Epigenetics ; 12(1): 69, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32430012

RESUMO

BACKGROUND: Chronic myeloid leukemia (CML) pathogenesis is mainly driven by the oncogenic breakpoint cluster region-Abelson murine leukemia viral oncogene homolog 1 (BCR-ABL) fusion protein. Since BCR-ABL displays abnormal constitutive tyrosine kinase activity, therapies using tyrosine kinase inhibitors (TKis) such as imatinib represent a major breakthrough for the outcome of CML patients. Nevertheless, the development of TKi resistance and the persistence of leukemia stem cells (LSCs) remain barriers to cure the disease, justifying the development of novel therapeutic approaches. Since the activity of histone deacetylase (HDAC) is deregulated in numerous cancers including CML, pan-HDAC inhibitors may represent promising therapeutic regimens for the treatment of CML cells in combination with TKi. RESULTS: We assessed the anti-leukemic activity of a novel hydroxamate-based pan-HDAC inhibitor MAKV-8, which complied with the Lipinski's "rule of five," in various CML cells alone or in combination with imatinib. We validated the in vitro HDAC-inhibitory potential of MAKV-8 and demonstrated efficient binding to the ligand-binding pocket of HDAC isoenzymes. In cellulo, MAKV-8 significantly induced target protein acetylation, displayed cytostatic and cytotoxic properties, and triggered concomitant ER stress/protective autophagy leading to canonical caspase-dependent apoptosis. Considering the specific upregulation of selected HDACs in LSCs from CML patients, we investigated the differential toxicity of a co-treatment with MAKV-8 and imatinib in CML versus healthy cells. We also showed that beclin-1 knockdown prevented MAKV-8-imatinib combination-induced apoptosis. Moreover, MAKV-8 and imatinib co-treatment synergistically reduced BCR-ABL-related signaling pathways involved in CML cell growth and survival. Since our results showed that LSCs from CML patients overexpressed c-MYC, importantly MAKV-8-imatinib co-treatment reduced c-MYC levels and the LSC population. In vivo, tumor growth of xenografted K-562 cells in zebrafish was completely abrogated upon combined treatment with MAKV-8 and imatinib. CONCLUSIONS: Collectively, the present findings show that combinations HDAC inhibitor-imatinib are likely to overcome drug resistance in CML pathology.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Inibidores de Histona Desacetilases/uso terapêutico , Mesilato de Imatinib/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Acetilação/efeitos dos fármacos , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/química , Apoptose/efeitos dos fármacos , Proteína Beclina-1/genética , Sítios de Ligação , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Simulação por Computador , Resistencia a Medicamentos Antineoplásicos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Proteínas de Fusão bcr-abl/metabolismo , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/química , Humanos , Mesilato de Imatinib/farmacologia , Isoenzimas/química , Leucemia Mielogênica Crônica BCR-ABL Positiva/enzimologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Simulação de Acoplamento Molecular , Células-Tronco Neoplásicas/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais/efeitos dos fármacos
11.
IUCrJ ; 6(Pt 5): 958-967, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31576228

RESUMO

Aminoacyl-tRNA synthetases (ARSs) play essential roles in protein biosynthesis as well as in other cellular processes, often using evolutionarily acquired domains. For possible cooperativity and synergistic effects, nine ARSs assemble into the multi-tRNA synthetase complex (MSC) with three scaffold proteins: aminoacyl-tRNA synthetase complex-interacting multifunctional proteins 1, 2 and 3 (AIMP1, AIMP2 and AIMP3). X-ray crystallographic methods were implemented in order to determine the structure of a ternary subcomplex of the MSC comprising aspartyl-tRNA synthetase (DRS) and two glutathione S-transferase (GST) domains from AIMP2 and glutamyl-prolyl-tRNA synthetase (AIMP2GST and EPRSGST, respectively). While AIMP2GST and EPRSGST interact via conventional GST heterodimerization, DRS strongly interacts with AIMP2GST via hydrogen bonds between the α7-ß9 loop of DRS and the ß2-α2 loop of AIMP2GST, where Ser156 of AIMP2GST is essential for the assembly. Structural analyses of DRS-AIMP2GST-EPRSGST reveal its pivotal architecture in the MSC and provide valuable insights into the overall assembly and conditionally required disassembly of the MSC.

12.
Int J Biol Macromol ; 119: 335-344, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30016658

RESUMO

Vancomycin resistance in Enterococci and its transfer to methicillin-resistant Staphylococcus aureus are challenging problems in health care institutions worldwide. High-level vancomycin resistance is conferred by acquiring either transposable elements of the VanA or VanB type. Enterococcus faecalis VanYB in the VanB-type operon is a d,d-carboxypeptidase that recognizes the peptidyl-d-Ala4-d-Ala5 extremity of peptidoglycan and hydrolyses the terminal d-Ala on the extracellular side of the cell wall, thereby increasing the level of glycopeptide antibiotics resistance. However, at the molecular level, it remains unclear how VanYB manipulates peptidoglycan peptides for vancomycin resistance. In this study, we have determined the crystal structures of E. faecalis VanYB in the d-Ala-d-Ala-bound, d-Ala-bound, and -unbound states. The interactions between VanYB and d-Ala-d-Ala observed in the crystal provide the molecular basis for the recognition of peptidoglycan substrates by VanYB. Moreover, comparisons with the related VanX and VanXY enzymes reveal distinct structural features of E. faecalis VanYB around the active-site cleft, thus shedding light on its unique substrate specificity. Our results could serve as the foundation for unravelling the molecular mechanism of vancomycin resistance and for developing novel antibiotics against the vancomycin-resistant Enterococcus species.


Assuntos
Enterococcus faecalis/química , Oligopeptídeos/química , Peptidoglicano/química , Sequência de Aminoácidos , Domínio Catalítico , Enterococcus faecalis/enzimologia , Ligantes , Modelos Moleculares , Estrutura Molecular , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Ligação Proteica , Conformação Proteica , Especificidade por Substrato , Zinco/química
13.
Biochem Pharmacol ; 131: 98-105, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28216016

RESUMO

Organic anion transporting polypeptide 1B3 (OATP1B3) is a major influx transporter mediating the hepatic uptake of various endogenous substrates as well as clinically important drugs such as statins and anticancer drugs. However, molecular mechanisms controlling the membrane trafficking of OATP1B3 have been largely unknown. Several reports recently indicated the presence of a distinct, cancer-type OATP1B3 variant lacking the N-terminal 28 amino acids compared to OATP1B3 expressed in non-malignant hepatocytes. Interestingly, the cancer-type OATP1B3 variant is located predominantly in the cytoplasm, implicating the involvement of the N-terminal region of OATP1B3 in its membrane trafficking. In the current study, we set out to experimentally validate the importance of the N-terminal region of OATP1B3 and to identify responsible sequence motif(s) in that region. A number of truncation or point mutants of OATP1B3 were transiently expressed in HEK293T, HCT-8 or MDCK II cells and their expression in cytoplasmic and surface membrane fractions were analyzed by immunoblotting. Our results indicated that the N-terminal sequence of OATP1B3, in particular, at the amino acid positions between 12 and 28, may be indispensable in its membrane trafficking. Moreover, our results using a fusion construct indicated that the first 50 amino acids of OATP1B3 are sufficient for its membrane localization. The importance of the N-terminal region in membranous localization was shared among the other OATP1B subfamily members, OATP1B1 and rat Oatp1b2. Our efforts to identify the responsible amino acid(s) or structure motif(s) in the N-terminal region did not pinpoint individual amino acids or motifs with putative secondary structures. Our current findings however demonstrate that the N-terminal region is important for the membrane localization of the OATP1B subfamily members and should facilitate future investigations of the mechanisms involved in the regulation and membrane trafficking of these important transporter proteins.


Assuntos
Transportadores de Ânions Orgânicos Sódio-Independentes/fisiologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Membrana Celular/metabolismo , Humanos , Camundongos , Transportadores de Ânions Orgânicos Sódio-Independentes/química , Transportadores de Ânions Orgânicos Sódio-Independentes/genética , Fosforilação , Mutação Puntual , Transporte Proteico , Ratos , Homologia de Sequência de Aminoácidos , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto , Frações Subcelulares/metabolismo
14.
Bioorg Chem ; 66: 63-71, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27018835

RESUMO

A series of novel hydroxamic acids bearing artemisinin skeleton was designed and synthesized. Some compounds in this series exhibited moderate inhibition against the whole cell HDAC enzymes. Especially, compound 6g displayed potent cytotoxicity against three human cancer cell lines, including HepG2 (liver cancer), MCF-7 (breast cancer) and HL-60 (leukemia cancer), with IC50 values of 2.50, 2.62 and 1.28µg/mL, respectively. Docking studies performed with two potent compounds 6a and 6g using Autodock Vina showed that both compounds bound to HDAC2 with relatively high binding affinities from -7.1 to 7.0kcal/mol compared to SAHA (-7.4kcal/mol). It was found in this research that most of the target compounds seemed to be more cytotoxic toward blood cancer cells (HL-60) than liver (HepG2), and breast (MCF-7) cancer cells.


Assuntos
Antineoplásicos/farmacologia , Artemisininas/farmacologia , Desenho de Fármacos , Ácidos Hidroxâmicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Artemisininas/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HL-60 , Células Hep G2 , Humanos , Ácidos Hidroxâmicos/síntese química , Ácidos Hidroxâmicos/química , Células MCF-7 , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
15.
PLoS One ; 10(12): e0145331, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26709515

RESUMO

Thermoplasma acidophilum is a thermophilic archaeon that uses both non-phosphorylative Entner-Doudoroff (ED) pathway and Embden-Meyerhof-Parnas (EMP) pathway for glucose degradation. While triosephosphate isomerase (TPI), a well-known glycolytic enzyme, is not involved in the ED pathway in T. acidophilum, it has been considered to play an important role in the EMP pathway. Here, we report crystal structures of apo- and glycerol-3-phosphate-bound TPI from T. acidophilum (TaTPI). TaTPI adopts the canonical TIM-barrel fold with eight α-helices and parallel eight ß-strands. Although TaTPI shares ~30% sequence identity to other TPIs from thermophilic species that adopt tetrameric conformation for enzymatic activity in their harsh physiological environments, TaTPI exists as a dimer in solution. We confirmed the dimeric conformation of TaTPI by analytical ultracentrifugation and size-exclusion chromatography. Helix 5 as well as helix 4 of thermostable tetrameric TPIs have been known to play crucial roles in oligomerization, forming a hydrophobic interface. However, TaTPI contains unique charged-amino acid residues in the helix 5 and adopts dimer conformation. TaTPI exhibits the apparent Td value of 74.6°C and maintains its overall structure with some changes in the secondary structure contents at extremely acidic conditions (pH 1-2). Based on our structural and biophysical analyses of TaTPI, more compact structure of the protomer with reduced length of loops and certain patches on the surface could account for the robust nature of Thermoplasma acidophilum TPI.


Assuntos
Gliceraldeído 3-Fosfato/metabolismo , Thermoplasma/enzimologia , Triose-Fosfato Isomerase/metabolismo , Triose-Fosfato Isomerase/ultraestrutura , Sequência de Aminoácidos , Dicroísmo Circular , Cristalografia por Raios X , Fosfato de Di-Hidroxiacetona/química , Dimerização , Gliceraldeído 3-Fosfato/química , Glicólise/fisiologia , Modelos Moleculares , Conformação Proteica
16.
Med Chem ; 11(8): 725-35, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26133355

RESUMO

Histone deacetylases (HDAC) are currently a group of validated targets for anticancer drug discovery and development. In our research program to find novel small molecules targeting these enzymes, we designed and synthesized two series of 3-hydroxyimino-2-oxoindoline- and 3- methoxyimino-2-oxoindoline-based N-hydroxypropenamides (3a-g, 6a-g). The results show that these propenamides potently inhibited HDAC2 with IC50 values in sub-micromolar range, approximately 10-fold lower than that of SAHA (also known as suberoylanilohydroxamic acid). Evaluation of cytotoxicity of these compounds in three human cancer cell lines revealed that most of the synthesized compounds were up to 5-fold more cytotoxic than SAHA. Docking studies showed that the compounds bound to HDAC2 at the binding site with higher binding affinities compared to SAHA. Our present results demonstrate that these novel 3-substituted-2-oxoindoline-based N-hydroxypropenamides are potential for further development as anticancer agents.


Assuntos
Acrilamidas/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Histona Desacetilase 2/antagonistas & inibidores , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Indóis/química , Indóis/farmacologia , Acrilamidas/síntese química , Acrilamidas/química , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Histona Desacetilase 2/metabolismo , Inibidores de Histona Desacetilases/síntese química , Humanos , Ácidos Hidroxâmicos/síntese química , Ácidos Hidroxâmicos/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...